CSA  >> Vol. 6 No. 11 (November 2016)

    一种手指姿势辨认体系设计
    Design of Finger Gesture Recognition System

  • 全文下载: PDF(891KB) HTML   XML   PP.648-656   DOI: 10.12677/CSA.2016.611080  
  • 下载量: 1,043  浏览量: 2,022   国度天然迷信基金支撑

作者:  

熊宏锦:海军设备部驻重庆地区军事代表局,重庆;
苑秉成:海兵工程大年夜学兵器工程系,湖北 武汉;
熊鹏文,任倩茹,张发辉:南昌大年夜学信息工程学院,江西 南昌

关键词:
姿势辨认手指康复多分类支撑向量机Gesture Recognition Finger Rehabilitation Multi Classification Support Vector Machine

摘要:

手指康复活动具有高移动精度与高控制分辨率的需求,加上因人而异的数据多样性,和在活动过程当中的模糊旌旗灯号辨认等成绩,及时精确的手指姿势辨认可以或许大年夜大年夜进步手指的康复后果。针对这一成绩,本文提出了一种简略单纯、便携的手指姿势辨认体系设计。应用多分类支撑向量机敌手部活动停止分析和辨认,大年夜量练习者所收集到的数据分为离线练习集和在线测试集,经过大年夜量的离线练习与在线测试,成果注解,多分类支撑向量机在分类和辨认过程当中具有高效性和实用性,并且极大年夜能够有助于手指的康复过程。

With high precision and high resolution of the mobile control demand, plus the data, it differs from man to man. Diversity, and in the process of movement of fuzzy signal recognition, real-time and accurate finger gesture recognition can greatly improve the effect of rehabilitation of finger. To solve this problem, this paper presents a simple, portable finger gesture recognition system design. The use of multi class support vector machine hand motion analysis and recognition, a large number of training data collected is divided into offline and online training set test set; after the test, a large number of online and offline training results show that the multi class support vector machine is efficient and practical in classification and recognition in the process of the rehabilitation process and which may contribute to the finger.

文章援用:
熊宏锦, 苑秉成, 熊鹏文, 任倩茹, 张发辉. 一种手指姿势辨认体系设计[J]. 计算机迷信与应用, 2016, 6(11): 648-656. http://dx.doi.org/10.12677/CSA.2016.611080

参考文献

[1] 吴军. 上肢康复机械人及相干控制成绩研究[D]: [博士学位论文]. 武汉: 华中科技大年夜学, 2012.
[2] 刑科新. 手功能康复机械人体系若干关键技巧研究[D]: [博士学位论文]. 武汉: 华中科技大年夜学, 2010.
[3] Qin, X.Y. (2011) Application of Rehabilitation Equipment in Functional Rehabilitation of Hemiplegia. Journal of Clinical Rehabilitative Tissue Engineering Research, 15, 9088-9092.
[4] 王茂斌. 脑卒中康复研究的停顿[J]. 中国康复医学杂志, 2001, 16(5): 264-265.
[5] 甘增康. 手部功能康复机械人电气控制体系的设计与研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大年夜学, 2011.
[6] Polotto, A., Modulo, F., Flumian, F., Xiao, Z.G., Boscariol, P. and Menon, C. (2012) Index Finger Rehabilitation/Assis- tive Device. IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob, 1518-1523.
https:/doi.org/10.1109/biorob.2012.6290676
[7] Lee, J.S., Lee, E.H., et al. (2014) Hand Region Extraction and Gesture Recognition from Video Stream with Complex Background through Entropy Analysis. IEEE Annual International Conference on Engineering in Medicine and Bioblgy Society, 1513-1516.
[8] Mohamaddan, S. and Komeda, T. (2010) Wire-Driven Mechanism for Finger Rehabilitation Device. International Conference on Mechatronics and Automation (ICMA), Xi’an, 1015-1018.
[9] Yu, C., Wang, X., Huang, H., et al. (2010) Vision-Based Hand Gesture Recognition Using Combinational Features. Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 543- 546.
[10] Ding, Y.D., Pang, H.B. and Wu, X.C. (2011) Recognition of Hand-Gesture Using Improved Local Binary Pattern. International Conference on Multimedia Technolo-gy.
[11] http://news.ifeng.com/gundong/detail_2012_04/27/14196749_0.shtml
[12] http://www.techtrend24.com/microsoft-developing-kinect-like-controller-that-uses-sound-wave
[13] http://china.rs-online.com/web/p/microcontrollers/7926050/
[14] http://easydatasheet.cn/search/stm32f407ZGT6
[15] Chapelle, O., Vapnik, V. and Bousquet, O. (2002) Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 46, 131-159.
https:/doi.org/10.1023/A:1012450327387
[16] 邓乃扬, 田英杰. 数据发掘中的新办法——支撑向量机[M]. 北京: 迷信出版社, 2004.
[17] Huang, C., Davis, L.S. and Townshend, J. (2002) An Assessment of Support Vector Machines for Land Cover Classification. International Journal of Remote Sensing, 23, 725-749.
https:/doi.org/10.1080/01431160110040323
[18] 张学工. 关于统计进修实际与支撑向量机[J]. 主动化学报, 2000, 26(1): 32-42.
[19] Foody, G. and Mathur, A. (2004) A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 1335-1343.
https:/doi.org/10.1109/TGRS.2004.827257