APP  >> Vol. 7 No. 8 (August 2017)

    碳纳米管场发射电流饱和特点的研究停顿
    Research Progress of Carbon Nanotubes Field-Emission Current Saturation

  • 全文下载: PDF(2011KB) HTML   XML   PP.223-234   DOI: 10.12677/APP.2017.78029  
  • 下载量: 636  浏览量: 2,085  

作者:  

林 晨,金玉丰:北京大年夜学深圳研究生院,广东 深圳;北京大年夜学微电子学研究院,微米/纳米加工技巧国度级重点实验室,北京;
张锦文:北京大年夜学微电子学研究院,微米/纳米加工技巧国度级重点实验室,北京

关键词:
碳纳米管场发射电流饱和特点Carbon Nanotube Field-Emission Current Saturation

摘要:

从1995年碳纳米管电子场发射实验研究的初次报导到如今[1],由于构造独特,电学特点凹陷,尺寸渺小和长径比大年夜,碳纳米管被认为是最具应用潜力和研究价值的场发射电子源之一[2]。同时,在较高场强下碳纳米管场发射电流表示出自饱和特点,这关于场发射显示技巧是可遇弗成求的优良特点,可以或许进一步降低功耗。本文重要从碳纳米管场发射的电流饱和特点动手,简介了场解吸、接触电阻、空间电荷效应、邻近碳纳米管间的相互感化和非金属局域态等五种能够招致场发射电流饱和的物理机理,关于分析和改进碳纳米管场发射器件性能具有重要意义。

Since the first report of CNT (Carbon Nanotube) field emission in 1995 [1], CNT has shown the most application potential and research value as field emission source because of its unique structure, outstanding electrical properties, nano-scale and great aspect ratio. Meanwhile, the CNT field-emission current shows self-saturation feature under high electric field, which is a promising advantage for energy saving of FED (Field Emission Display) technology. This paper introduced five mechanisms responsible for CNT field-emission current saturation including field desorption, contacting resistance, space charge effect, neighboring nanotube interaction and non-metallic local states, which are very important for the analysis and improvement of CNT FE devices.

文章援用:
林晨, 张锦文, 金玉丰. 碳纳米管场发射电流饱和特点的研究停顿[J]. 应用物理, 2017, 7(8): 223-234. https://doi.org/10.12677/APP.2017.78029

参考文献

[1] de Heer, W.A., Châtelain, A. and Ugarte, D. (1995) A Carbon Nanotube Field-Emission Electron Source. Science, 270, 1179-1180.
https://doi.org/10.1126/science.270.5239.1179
[2] Calderon-Colon, X., et al. (2009) A Carbon Nanotube Field Emission Cathode with High Current Density and Long- Term Stability. Nanotechnology, 20, Article ID: 325707.
https://doi.org/10.1088/0957-4484/20/32/325707
[3] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[4] Tran, P.D., et al. (2015) A Noble Metal-Free Proton-Exchange Membranefuel Cell Based on Bio-Inspired Molecular Catalysts. Chemical Science, 6, 2050.
https://doi.org/10.1039/C4SC03774J
[5] Ishikawa, M., et al. (2002) Carbon Nanotube as a Probe for Friction Force Microscopy. Physica B, 323, 184-186.
https://doi.org/10.1016/S0921-4526(02)00973-0
[6] Johnson, R.C. 以碳纳米管完成真实的3D芯片[J]. 集成电路应用, 2015(5): 38-39.
[7] Zeevi, G., et al. (2016) Automated Circuit Fabrication and Directcharacterization of Carbon Nanotube Vibrations. Nature Communication, 7, 12153.
https://doi.org/10.1038/ncomms12153
[8] Zheng, J., et al. (2015) Circuit Modeling of Cu/CNT Composite Through-Silicon Vias (TSV). Proceedings of 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, 1-3 July 2015, 1-3.
https://doi.org/10.1109/IMWS-AMP.2015.7325040
[9] 史永胜, 等. 碳纳米管场致发射显示器的研究停顿[J]. 材料导报, 2008, 22(8): 95-98.
[10] Kim, Y.C., et al. (2015) A 46-Inch Diagonal Carbon Nanotube Field Emissionbacklight for Liquid Crystal Display. Carbon, 91, 304-310.
https://doi.org/10.1016/j.carbon.2015.04.093
[11] Andersen, N.I., et al. (2015) Metal Oxides/CNT Nano-Composite Catalysts for Oxygenreduction/Oxygen Evolution in Alkaline Media. Applied Catalysis B: Environmental, 163, 623-627.
https://doi.org/10.1016/j.apcatb.2014.08.033
[12] Yoon, S., et al. (2015) Carbon Nanotube Film Anodes for Flexible Lithium Ion Batteries. Journal of Power Sources, 279, 495-501.
https://doi.org/10.1016/j.jpowsour.2015.01.013
[13] Herring, C. and Nichols, M.H. (1949) Thermionic Emission. Reviews of Modern Physics, 21, 185-227.
https://doi.org/10.1103/RevModPhys.21.185
[14] Spindt, C.A. (1968) A Thin-Film Field-Emission Cathode. Journal of Applied Physics, 39, 3504-3505.
https://doi.org/10.1063/1.1656810
[15] Bonard, J.M., et al. (2002) Field Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope. Physical Review Letters, 89, Article ID: 197602.
https://doi.org/10.1103/PhysRevLett.89.197602
[16] Fowler, R.H. and Nordheim, L. (1928) Electron Emission in Intense Electric Fields. Royal Society, 119, 173-181.
https://doi.org/10.1098/rspa.1928.0091
[17] 王琪琨, 等. 碳纳米管场发射阴极的厚膜工艺研究[J]. 电子器件, 2004, 27(4): 543-546.
[18] 崔云康, 等. 大年夜电流碳纳米管场发射阴极研究[J]. 强激光与粒子束, 2013, 25(6): 1509-1512.
[19] 乔宪武. 碳纳米管场发射性质的研究[D]: [硕士学位论文]. 兰州: 兰州理工大年夜学, 2009.
[20] Wallash, A. and Levit, L. (2003) Electrical Breakdown and ESD Phenomena for Devices Withnanometer-to-Micron Gaps. Proceedings of SPIE, 4980, 87-96.
https://doi.org/10.1117/12.478191
[21] Dean, K.A. and Chalamala, B.R. (2000) Current Saturation Mechanisms in Carbon Nanotube Field Emitters. Applied Physics Letters, 76, 375-377.
https://doi.org/10.1063/1.125758
[22] Zhang, J.H., et al. (2006) Interaction between Carbon Nanotubes and Substrate and Its Implication on Field Emission Mechanism. Carbon, 44, 418-422.
https://doi.org/10.1016/j.carbon.2005.09.004
[23] Child, C.D. (1911) Discharge from Hot CaO. Physical Review Series I, 32, 492-511.
https://doi.org/10.1103/PhysRevSeriesI.32.492
[24] Barbour, J.P., Dolan, W.W., et al. (1953) Space-Charge Effects in Field Emission. Physical Review, 92, 45-54.
https://doi.org/10.1103/PhysRev.92.45
[25] Xu, N.S., et al. (2001) Vacuum Gap Dependence of Field Electron Emission Properties of Large Area Multi-Walled- carbon Nanotube Films. Journal of Physics D: Applied Physics, 34, 1597-1601.
https://doi.org/10.1088/0022-3727/34/11/307
[26] Collins, P.G. and Zettl, A. (1997) Unique Characteristics of Cold Cathode Carbon-Nanotube-Matrix Field Emitters. Physical Review B, 55, 9391-9399.
https://doi.org/10.1103/PhysRevB.55.9391
[27] Bonard, J.M., et al. (1998) Field Emission from Single-Wall Carbon Nanotube Films. Applied Physics Letters, 73, 918- 920.
https://doi.org/10.1063/1.122037
[28] Carroll, D.L., et al. (1997) Electronic Structure and Localized States at Carbon Nanotube Tips. Physical Review Letters, 78, 2811-2814.
https://doi.org/10.1103/PhysRevLett.78.2811
[29] Bonard, J.M. (1998) Field-Emission-Induced Luminescence from Carbon Nanotubes. Physical Review Letters, 81, 1441-1444.
https://doi.org/10.1103/PhysRevLett.81.1441